Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bipyridine ligands have been extensively employed in nickel catalysis, with ligand modifications focused on steric or electronic tuning. In this work, we explore modifications designed to modulate the coordination mode using a 2,2'-bipyridine derivative with an appended aza-crown ether macrocycle capable of flexidentate binding to nickel. A series of complexes varying in charge from neutral to dicationic demonstrates the flexibility of the macrocycle, with bipyridine-aza-crown ether denticity changing from к4 to к6 upon sequential abstraction of chloride ligands. The changes in binding mode can be reversed by addition of chloride ion. Comparisons between the macrocycle-containing ligand and an analogous ligand with a non-macrocyclic diethylamine donor provide insight into the role of the crown ether, including in electrochemical reductions probed via cyclic voltammetry.more » « less
-
The thioether-diphosphine pincer-ligated molybdenum complex, (PSP)MoCl3 (1-Cl3, PSP = 4,5-bis(diisopropylphosphino)-2,7-di-tert-butyl-9,9-dimethyl-9H-thioxanthene) has been synthesized as a catalyst-precursor for N2 reduction catalysis, with a focus on an integrated experimental/computational mechanistic investigation. The (PSP)Mo unit is isoelectronic with the (PNP)Mo (PNP = 2,6-bis(di-t-butylphosphinomethyl)pyridine) fragment found in the family of catalysts for the reduction of N2 to NH3 first reported in 2011 by Nishibayashi and co-workers. Under an atmosphere of N2 the reaction of 1-Cl3 with three reducing equivalents yields the dinuclear penta-dinitrogen Mo complex [(PSP)Mo(N2)2](-N2), 2. Electrochemical studies reveal that 1-Cl3 is significantly more easily reduced than (PNP)MoCl3 (with a potential ca. 0.4 eV less negative). The bridging-nitrogen complex 2 shows no indication of undergoing N2 cleavage to Mo nitride complexes. The reaction of 1-Cl3 with only two reducing equivalents, however, under N2 atmosphere and in the presence of iodide, affords the product of N2 cleavage, the nitride complex (PSP)Mo(N)(I). DFT calculations implicate another N2-bridged complex, [(PSP)Mo(I)]2(N2), as a viable intermediate in facile N2 cleavage to yield (PSP)Mo(N)(I). Conversion of the nitride ligand to NH3 has been studied. If considering sequential addition of H atoms to the nitride, formation of the first N-H bond is by far the thermodynamically least favorable of the three N-H bond formation steps. The first N-H bond was formed by reaction of (PSP)Mo(N)(I) with [LutH]Cl, where coordination of Cl– to Mo plays an essential role. Computations suggest that a second protonation, followed by a rapid and very favorable one-electron reduction, and then a third protonation, furnishes ammonia. In agreement with calculations, ammonia can be generated using either mild H-atom transfer reagents or mild reductants/acids. This comprehensive analysis of the elementary steps of ammonia synthesis and the role of the central pincer donor and halide association provides guidance for future catalyst designs.more » « less
-
Porphyrin complexes are well-known in O 2 and CO 2 reduction, but their application to N 2 reduction is less developed. Here, we show that oxo and nitrido complexes of molybdenum supported by tetramesitylporphyrin (TMP) are effective precatalysts for catalytic N 2 reduction to ammonia, verified by 15 N 2 labeling studies and other control experiments. Spectroscopic and electrochemical studies illuminate some relevant thermodynamic parameters, including the N–H bond dissociation free energy of (TMP)MoNH (43 ± 2 kcal mol −1 ). We place these results in the context of other work on homogeneous N 2 reduction catalysis.more » « less
An official website of the United States government
